A natural plant-derived dihydroisosteviol prevents cholera toxin-induced intestinal fluid secretion.
نویسندگان
چکیده
Stevioside and its major metabolite, steviol, have been reported to affect ion transport in many types of tissues, such as the kidney, pancreas, and intestine. The effect of stevioside, steviol, and its analogs on intestinal Cl(-) secretion was investigated in a human T84 epithelial cell line. Short-circuit current measurements showed that steviol and analogs isosteviol, dihydroisosteviol, and isosteviol 16-oxime inhibited in a dose-dependent manner forskolin-induced Cl(-) secretion with IC(50) values of 101, 100, 9.6, and 50 microM, respectively, whereas the parent compound stevioside had no effect. Apical Cl(-) current measurement indicated that dihydroisosteviol targeted the cystic fibrosis transmembrane regulator (CFTR). The inhibitory action of dihydroisosteviol was reversible and was not associated with changes in the intracellular cAMP level. In addition, dihydroisosteviol did not affect calcium-activated chloride secretion and T84 cell viability. In vivo studies using a mouse closed-loop model of cholera toxin-induced intestinal fluid secretion showed that intraluminal injection of 50 microM dihydroisosteviol reduced intestinal fluid secretion by 88.2% without altering fluid absorption. These results indicate that dihydroisosteviol and similar compounds could be a new class of CFTR inhibitors that may be useful for further development as antidiarrheal agents.
منابع مشابه
Activation of AMP-activated protein kinase by a plant-derived dihydroisosteviol in human intestinal epithelial cell.
Our previous study has shown that dihydroisosteviol (DHIS), a derivative of stevioside isolated from Stevia rebaudiana (Bertoni), inhibits cystic fibrosis transmembrane conductance regulator (CFTR)-mediated transepithelial chloride secretion across monolayers of human intestinal epithelial (T84) cells and prevents cholera toxin-induced intestinal fluid secretion in mouse closed loop models. In ...
متن کاملA novel plant-derived inhibitor of cAMP-mediated fluid and chloride secretion.
We have identified an agent (SP-303) that shows efficacy against in vivo cholera toxin-induced fluid secretion and in vitro cAMP-mediated Cl-secretion. Administration of cholera toxin to adult mice results in an increase in fluid accumulation (FA) in the small intestine (FA ratio = 0.63 vs. 1.86 in control vs. cholera toxin-treated animals, respectively). This elevation in FA induced by cholera...
متن کاملintestinal fluid and electrolyte secretion induced by cholera and Escherichia coli
Cholera toxin and Escherichia coli heat labile toxin (LT) induced intestinal secretion has in the past been attributed exclusively to an increase in intracellular cAMP whereas E coli heat stable toxin (ST) induced secretion is mediated through cGMP. Evidence is accumulating on the importance of 5-hydroxytryptamine (5-HT) in cholera toxin induced secretion, but its role in LT and ST is not well ...
متن کاملPotentiating effect of bile on enterotoxin-induced diarrhea.
The influence of bile acids on adenosine 3',5'-phosphate-induced intestinal secretion was studied in mice. Bile flow was stopped by ligation of the common bile duct, and secretion was induced in ligated loops of the small intestine. The decrease of bile led to inhibition of hypersecretion after challenge with heat-labile enterotoxins from Vibrio cholerae and Escherichia coli, as well as with pr...
متن کاملRole of mast cells and pro-inflammatory mediators on the intestinal secretion induced by cholera toxin.
Recent data suggest that diarrhea caused by Vibrio cholerae involves a pro-inflammatory mediators release, such as cytokines, prostaglandin and nitric oxide. The aim of this study was to investigate the role of mast cells and their mediators in the intestinal secretion induced by cholera toxin. We examined the dose responses, time course and role of mast cells and pro-inflammatory mediators in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 324 2 شماره
صفحات -
تاریخ انتشار 2008